Role of macrophages in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction.

نویسندگان

  • Ann M Lee
  • Allison D Fryer
  • Nico van Rooijen
  • David B Jacoby
چکیده

Viral infections exacerbate asthma. One of the pathways by which viruses trigger bronchoconstriction and hyperresponsiveness is by causing dysfunction of inhibitory M(2) muscarinic receptors on the airway parasympathetic nerves. These receptors normally limit acetylcholine (ACh) release from the parasympathetic nerves. Loss of M(2) receptor function increases ACh release, thereby increasing vagally mediated bronchoconstriction. Because viral infection causes an influx of macrophages into the lungs, we tested the role of macrophages in virus-induced airway hyperresponsiveness and M(2) receptor dysfunction. Guinea pigs infected with parainfluenza virus were hyperresponsive to electrical stimulation of the vagus nerves but not to intravenous ACh, indicating that hyperresponsiveness was due to increased release of ACh from the nerves. In addition, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction, indicating M(2) receptor dysfunction. Treating animals with liposome-encapsulated dichloromethylene-diphosphonate depleted macrophages as assessed histologically. In these animals, viral infection did not cause airway hyperresponsiveness or M(2) receptor dysfunction. These data suggest that macrophages mediate virus-induced M(2) receptor dysfunction and airway hyperresponsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexamethasone prevents virus-induced hyperresponsiveness via multiple mechanisms.

In the lungs, neuronal M2 muscarinic receptors inhibit acetylcholine release from the parasympathetic nerves. Parainfluenza virus infection causes loss of M2 receptor function, which increases acetylcholine release and vagally mediated bronchoconstriction. Because glucocorticoids are known to inhibit airway hyperresponsiveness, we tested whether dexamethasone (6.5 or 65 microg/kg i.p.) prevents...

متن کامل

Role of insulin in antigen-induced airway eosinophilia and neuronal M2 muscarinic receptor dysfunction.

In the lungs, neuronal M2 muscarinic receptors limit ACh release from parasympathetic nerves. In antigen-challenged animals, eosinophil proteins block these receptors, resulting in increased ACh release and vagally mediated hyperresponsiveness. In contrast, diabetic rats are hyporesponsive and have increased M2 receptor function. Because there is a low incidence of asthma among diabetic patient...

متن کامل

Ozone-induced hyperresponsiveness and blockade of M2 muscarinic receptors by eosinophil major basic protein.

Control of airway smooth muscle is provided by parasympathetic nerves that release acetylcholine onto M(3) muscarinic receptors. Acetylcholine release is limited by inhibitory M(2) muscarinic receptors. In antigen-challenged guinea pigs, hyperresponsiveness is due to blockade of neuronal M(2) receptors by eosinophil major basic protein (MBP). Because exposure of guinea pigs to ozone also causes...

متن کامل

Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways.

Antigen challenge of sensitized guinea pigs decreases the function of inhibitory M2 muscarinic autoreceptors on parasympathetic nerves in the lung, potentiating vagally induced bronchoconstriction. Loss of M2 receptor function is associated with the accumulation of eosinophils around airway nerves. To determine whether recruitment of eosinophils via expression of VLA-4 and L-selectin is critica...

متن کامل

Effects of neurokinin receptor antagonists in virus-infected airways.

We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 286 6  شماره 

صفحات  -

تاریخ انتشار 2004